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ABSTRACT

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE
1929 GRAND BANKS SLIDE

by Curtis William McCall

The St. Pierre Slope off the Grand Banks of Newfoundland is the site of a large
submarine failure complex that was the result of the 1929 Grand Banks earthquake. A
2000 km? area has been investigated in detail using seismic reflection, sidescan sonar and
core data. Failure development and evolution is strongly influenced by local changes in
gradient on the slope. Documented modes of failure are mass flows, slumps, and isolated
occurrences of glides and creep. The total volume of sediment involved in initial failure
is estimated at 93 km®: 47 km® as MTDs on the slope and 46 km® that evacuated, likely
contributing to the 1929 turbidity current. The total volume of the turbidite is
conservatively estimated at 175 km®, suggesting that at least 222 km® (47 km® + 175km°)
of sediment was eroded and displaced during the 1929 event.
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CHAPTER 1
Introduction

On November 18%, 1929, the St. Pierre Slope was the site of a massive
underwater earthquake, known worldwide as the 1929 Grand Banks earthquake. The M,
7.2 earthquake occurred beneath the ridge between St. Pierre Valley and Eastern Valley
with an epicentral position of 44°41° N, 56°00° W and focal depth of 16.8 km (Dewey
and Gordon, 1984) (Figure 1.1). The initial shock at approximately 20:30 GMT was
followed by two aftershocks at around 23:00 and 02:00 (November 19%) GMT that
produced earthquake-induced ground accelerations that triggered widespread surficial
failure of Holocene and Pleistocene sediments. Failure is thought to have been
instantaneous within 100 km of the epicentre as documented by deep-sea cable breaks
{Doxsee, 1948; Heezen and Ewing, 1952; Piper et al., 1988). Subsequent cable breaks
downlsope on the Laurentian Fan were sequential from 1 to 13 hours after the earthquake
(Piper et al., 1988). These breaks are attributed to a turbidity current that developed from
failed sediments and swept down from the upper slope to the Sohm Abyssal Plain,
reaching a maximum flow velocity of 19 m/s (68 km/h) as deduced from cable break
times (Piper et al., 1988). Such a massive current was first thought to have been
generated by a single cataclysmic slumping event (Heezen and Drake, 1964). However,
interpretation of GLORIA and SeaMARC I sidescan sonar data, and high-resolution
seismic reflection data (mostly 3.5 kHz) from the upper Laurentian Fan and St. Pierre

Slope show that this likely was not the case (Masson et al, 1985, Piper et al., 1985).
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Figure 1.1- Regional map of the southeastern Canadian margin showing extent of the
deepest parts (-4 km) of the Scotian Basin, study area (hatched box) and the 1929 Grand
Banks earthquake epicentre (o) (modified from Pe-Piper, 2002). The full extent of
France’s exclusive economic zone (EEZ) is shown (turquoise).

Instead, it is apparent that sediment failures (or mass transport deposits (MTDs)) are
numerous and widespread in the form of slides and debris flows (Piper et al., 1999a).
Failure seemingly occurred both synchronously (instantaneous during earthquakes
shocks) and asynchronously (occurring after initial shocks), but timing of the subsequent
failures is uncertain, and may possibly be related to the two aftershocks that occurred 2.5
and 5.5 hours after the initial shock. Additional sidescan sonar imaging of the failures by
SAR (Systéme Acoustique Remorqué) in 1990 shows the observed failures to be ‘fresh’,

lacking any substantial surficial veneer (Piper et al., 1999a), thus demonstrating the likely

relationship of observed sediment failures with the recent earthquake of 1929.
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‘Mass transport deposits’, for the purpose of this study, are defined as most
deepwater features or stratigraphic intervals that have been resedimented (i.e. moved
through a gravity-driven process) since their time of original deposition. This includes
deposits such as glides, slumps, mass flows and creep.

A glide is a mass of sediment that moves downslope on a planar glide plane (e.g.
failure plane) or shear surface and shows little or no internal deformation; whereas a
slump is a mass of sediments that moves downslope on a concave-up glide plane or shear
surface and undergoes rotational movements typically causing moderate to extensive
internal deformation (Embley and Jacobi, 1977). Glides represent translational
movements, whereas slumps represent rotational movements. Movement downslope of a
glide or slump block may result in disintegration into numerous, smaller blocks of
various sizes that through further downslope movement and subsequent incorporation of
water, transform these deposits into mass flows that accumulate and deposit as mud clast
conglomerates. This process is inferred from seismic reflection data where mass flows
are seen immediately downslope and in contact with glide or slump deposits. There is no
obvious structure within these mass flows; the deposits typically consist of a matrix with
‘floating’ mud clasts. Creep is the gradual downslope displacement of a sediment mass
along a failure (or shear) plane. Structure within the translated mass is retained and only

slightly distorted, as represented by undulating reflections above the flat failure plane.
1.1 Objectives

Shallow MTDs are fairly well documented on the eastern Canadian margin,

particularly on the Scotian Margin where many Late Pleistocene, complex, shallow
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MTDs have been documented that closely resemble the disturbed seabed facies
documented in this study (Piper et al., 1985; Hughes Clarke et al., 1992; Mosher et al.,
1994; Mulder and Moran, 1995; Gauley, 2001; Piper and McCall, 2003; Mosher et al.,
2004). The complex relationship between MTDs and the surrounding environment, e.g.
highly variable gradients and failure evolution, makes the St. Pierre Slope a unique
location for study. Although MTDs at the surface have been studied extensively through
sidescan sonar data, no comprehensive seismic reflection- or core-based study has been
completed to date. Acoustic data from the St. Pierre Slope show widespread, acoustically
incoherent deposits at the seafloor, from just below 500 mbsl to 3300 mbsl, with
documentation restricted only by the extent of seismic reflection coverage. Interpretation
and systematic classification of observed MTDs, and their interrelations with one another
and the surrounding environment has been undertaken in this thesis through integration of
these data sets.

This study uses the observed disturbed and undisturbed sediments of St. Pierre
Slope to understand the dynamics of sediment mass failures on the slope, particularly
those related to the 1929 Grand Banks earthquake, by: I) Sedimentology: (a) construct a
composite stratigraphy of sediment types from cores containing undisturbed sediments
and an acoustic-based stratigraphy to about 75 mbsf, (b) determine rates of sedimentation
on the slope and rise and relate these to past climates and current flows; II)
Geomorphology: (a) establish MTD and evacuation geometries, (b) relate gradients to
MTD and evacuation volumes; and III) MTD classification: (a) categorize MTDs

sampled by piston cores (mesoscale) and imaged in high-resolution seismic data
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(macroscale), (b) relate MTDs to other documented MTDs on the eastern Canadian
margin and European margin.

Integrating core data, seismic reflection profiles, appropriate sidescan sonar data
and submersible observations, and using published and unpublished accounts, will lend
insight into the dynamics of failures on the St. Pierre Slope and rise.

The practical applications of this study include: (a) future telecommunication risk
evaluation, (b) public safety (e.g. tsunami risk evaluation), and (c) risk associated with
drilling into subsurface sediments (petroleum exploration).

Throughout this thesis reference will be made to deposits at the surface as either

‘failed sediments’, ‘disturbed sediments’ or ‘MTDs’ all of which are synonymous.

1.2 Data coverage

With this study largely being based on high-resolution seismic reflection profiles,
it was imperative to define a study region that had relatively dense seismic data coverage
so as to represent the volume and style of failure as accurately as possible. Data coverage
is densest in the middle slope from about 800-1400 mbsl, with an adequate amount of
data coverage on the upper and lower slopes at 500-800 mbsl and 1400-2100 mbsl.
Downslope of 2100 mbsl to ~3300 mbsl, seismic coverage is sporadic, providing only a
general picture of the volume and style of deposition of MTDs. Piston cores are
numerous both throughout the defined study area and its outer limits, particularly on the
upper and middle slopes. Sidescan sonar data provided a plan view of the seafloor that
enabled the visualization of the location of piston cores within morphologically distinct

areas and the association of seismic reflection profiles with seabed features of particular
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interest. A color relief map, generated from isobaths that were selected from 12 kHz data,
demonstrates highly variable gradients on the slope, permitting relationships between
slope morphology and MTDs to be studied in plan view, in addition to being studied from

2D seismic reflection profiles.

1.3 Regional setting

The St. Pierre Slope is located in a sedimentary basin complex broadly known as
the Scotian Basin (Figure 1.1), which is located under the continental shelf and slope
offshore Nova Scotia and southwestern Newfoundland. The basin, covering an area in
excess of 50,000 square miles, extends from the Yarmouth Arch to the central Grand
Banks and from the edge of the ‘coastal plain’ on the inner shelf to the continental rise
(Wade and MacLean, 1990; Macl.ean and Wade, 1992). The basin comprises shallow
basement platforms and ridges that flank deep marginal sedimentary basins leading to the
Atlantic Ocean basin to the south.

Development of the basin began in the Mesozoic (~230 Ma) as a series of grabens
and half-grabens that resulted from regional extension of the crust. The grabens are
floored with redbeds and filled variably with redbeds and salt of Triassic and Early
Jurassic age (Jansa and Wade, 1975). The following is a simplified Mesozoic-Cenozoic
stratigraphy of the Scotian Basin. The continental redbeds of Eurydice and evaporites of
Argo formations are the oldest of the Mesozoic sediments. Continental clastic rocks of
the Mohican and evaporitic dolostones of the Iroquois formations formed during the
Early-Mid Jurassic. During the Middle and Late Jurassic, the Mohawk, Mic Mac,
Abenaki and Verrill Canyon formations, composed of clastic and carbonate facies,

formed along the basin margin. Thick fluvial-deltaic deposits of the Lower Cretaceous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comprise the Missisauga and Logan Canyon formations, whereas the overlying Dawson
Canyon and Wyandot formations consist of Upper Cretaceous transgressive marine
shales and minor limestones, and chalk and marl, respectively. The topmost succession
consists of mudstones, conglomerates and sandstones of the Banquereau Formation
deposited during the uppermost Cretaceous and during the Paleogene transgression and
subsequent Neogene regression. Overlying these formations are Quaternary sediments of
the Laurentian formation.

Salt diapirs and pillows are common beneath the basin and these diapirs
frequently uplift, deform and sometimes rupture overlying sediment layers (MacLean and
Wade, 1992). Slope oversteepening and shallow faulting can be a consequence of salt
tectonics and present an initiation point for failure of sediment. Additionally, because
diapirism causes deformation and occasional rupture of overlying and adjacent
sediments, it has a tendency to facilitate upward migration of gas and fluids along these

disturbed areas, which also can contribute to slope instability.

1.4 Local geologic setting

St. Pierre Slope extends from the shelf break at 200 mbsl to 2100 mbsl where the
continental slope gives way to the continental rise. The slope is bounded to the
west by the Eastern Valley and to the east by the Grand Banks Valley (Figure 1.2). Slope

valleys dissect the area, with the largest being the St. Pierre Valley (thalweg depth of
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Figure 1.2- Bathymetry map of study area (yellow) and vicinity. Epicentre @) of 1929 Grand Banks earthquake, major

valleys and associated tributary valleys, and upper boundaries of upper, mid and lower slope, and rise (red lines) are
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shown, Boxes represent locations of Figures 1.3 a and b. UW-GB Valley= upper Western Grand Banks Valley; A= St.

Pierre Valley; B= upper Eastern St. Pierre Valley; C= upper Western St. Pierre Valley. A section of France's exclusive

economic zone (EEZ) is shown (turquoise). Bathymetry courtesy of GSCA.



300 m), which likely originated from proglacial erosional processes. Farther downslope
to about 3500 mbsl, the seafloor is broadly incised by Grand Banks Valley and associated
tributary valleys, and at about 4000 mbsl, the Grand Banks Valley merges with Eastern
Valley. Gradients of the upper, middle and lower slope generally do not exceed 5°,
except on and near valley heads and sidewalls, and at scarps. The rise (which begins at
~2500 mbsl) is much gentler with gradients usually not exceeding 1°.

On the upper slope, stretching from the head of Eastern Valley to the western
edge of the canyons off Halibut Channel, arcuate headscarps are visible in water depths
exceeding 500 m. At the head of Eastern Valley these headscarps are numerous with
widths generally not exceeding 750 m, with the larger headscarps present off St. Pierre
Bank just below the 500 m isobath (Figure 1.3). Failure has not occurred above the 500 m
isobath as sediments are more consolidated due to till deposition and iceberg scouring
(Bonifay and Piper, 1988; Piper et al., 1999a).

Numerous MTDs exist throughout the study area, transforming a seabed that
presumably was once smooth and undisturbed to one of high surface irregularity (Figure
1.3). MTDs on the rise are generally thicker and stacked (Piper et al., 2005). Pockmarks
are widespread on the upper and middle slope down to 1000 mbsl! and in some areas lie
within a few metres from headscarps and sidewalls in undisturbed sediments, and clearly

cut rotational slumps (Figure 1.3) (Piper et al., 1999a).
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Figure 1.3- A) SeaMARC I sidescan sonar images and associated interpretation (A1) of
upper St. Pierre Slope. In Al, headscarps (dashed lines), downslope-trending lineations
(dotted lines) and pockmarks (e) are illustrated. B) SAR sidescan sonar images and
associated interpretation (B1) from head of Eastern Valley. In B1l, numerous headscarps
(dashed lines), mass transport deposits (peach- blocky debris flows, orange- rotational
slide), flow channels (arrows), sub-parallel ridges (lines) and pockmarks (e) are
illustrated. Undisturbed seabed is in gray. Interpretation from Piper et al. (1999a).
Locations of figures are in Figure 1.2.
1.5 Previous work on MTDs from St. Pierre Slope

Studies pertaining to mass transport deposits encountered on the St. Pierre Slope
have chiefly utilized sidescan sonar data with some accompanying high resolution
seismic reflection data (mainly 3.5 kHz data) to ascertain failure properties and
characteristics (Piper et al., 1985; Piper et al., 1988; Hughes Clarke et al., 1990; Piper et
al., 1999a). Piper et al. (1999a) interpreted SAR data and older SeaMARC I data to arrive

at the most complete published study on MTDs from this region to date. The authors
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defined the slope quantitatively and showed that St. Pierre Slope is composed of several
distinct seabed zones (these zones are not related to the seabed zones described in
Chapter 3). The disturbed seabed zone consists of flat seabed or dissected seabed, both of
which have rotational slumps and debris flow deposits of varying size. Slumps in the area
involve both small (thin- a few metres) and large amounts of sediment (thick- tens of
metres). Debris flow deposits typically exist immediately downslope of rotational slumps
and near steep slopes of St. Pierre Valley. Seabed zones mildly affected by the 1929
event include: valley floors, gullied ridges and spurs (mostly Laurentian Fan), and flat,
undisturbed seabed to 1400 mbsl. The valleys commonly have complex sediment facies
deposited on the floor, and valley walls that are up to hundreds of metres in height. The
Slat, undisturbed seabed zone is primarily restricted to the upper continental slope, to
depths of about 550 m. Seabed facies distribution on the St. Pierre Slope is as follows.
The middle slope (700- 1400 mbsl) is characterized by widespread failure, predominantly
slumping with some debris flow deposits. In water depths between 700-900 mbsl] and
farther downslope, initiation of failure (predominantly slumping) appears to have been
caused by a local increase in gradient: up to 10° and 6°, respectively. The lower slope
(1400-1900 mbsl) is dominated by large rotational slumps that are partially covered by
smaller rotational slumps. The transition of slumps into debris flows is visible in sidescan
sonar sonograms. Farther downslope, debris flow deposits are the main features and
occur on gradients of 1-5°, but pass downslope onto the St. Pierre Valley walls where

mean gradients are 3-5° but locally can exceed 20°.

11
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1.6 Previous stratigraphic studies

Comprehensive studies on the shallow (>75 m thickness) stratigraphic succession
of St. Pierre Slope are lacking. Piper and Skene (1998) and Skene and Piper (2003)
conducted studies on Laurentian Fan beginning at 3000 mbsl and Bonifay and Piper
(1988) on the upper St. Pierre Slope down to about 600 mbsl using both seismic
reflection and core data. Piper and Normark (1989), MacDonald (2001), and Piper et al.
(2005) interpreted deep multichannel seismic reflection data to arrive at a late Cenozoic
stratigraphy of the St. Pierre Slope, each subsequent paper building on the former.
However, no core stratigraphy has been described for the main part of St. Pierre Slope,
nor has a high-resolution seismic stratigraphy been attempted. This study will aim to
bridge the gap between the previously established seismic and core stratigraphies,
forming the first complete late Quaternary stratigraphic record from the upper St. Pierre

Slope down to the rise, including the Laurentian Fan.

1.6.1 Late Cenozoic stratigraphy

Piper and Normark (1989) developed a Late Cenozoic stratigraphic sequence
using high-resolution multichannel seismic reflection profiles for the upper 0.8 seconds
of sediment for the upper to middle St. Pierre Slope. The base of the sequence is a local
erosion surface (reflection E) with broad, shallow channels. These channels are draped by
packets of reflections that have locally eroded the channel walls and are capped by
pronounced reflection ‘D’. Locally, the surface of reflection D is disrupted by low relief
channels and shows levee growth. Elsewhere, this reflection is overlain by parallel

reflections interpreted as a prograded mud sequence. By 100 ms above D, gullies are
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developed and become widespread about 200 ms above D to reflection C. Levee
development above reflection C seems localized particularly on the west flank of Halibut
Channel and along small valleys existing at the east edge of Laurentian Channel.
Reflection B marks a period of substantial local erosion and the apparent termination of
levee-like aggradation. Upslope, reflection B marks the base of acoustically incoherent
sediments that pass downslope into well-stratified sediments. Reflection A marks the top
of well-stratified sediments. There is some levee growth and gully cutting above
reflection A.

Inferred events associated with the above-defined reflections of the St. Pierre
Slope are as follows (Piper and Normark, 1989): E- lowstand of sea-level and cutting of
slope valleys; D- highstand of sea-level and deposition of mud drape; C- Lowstand and
widespread development of slope gullies; and A and B- slope crossing glaciation and
some slope gully cutting.

Building on the Late Cenozoic seismic stratigraphy, MacDonald (2001) and Piper
et al. (2005) used new multichannel seismic reflection profiles together with Miocene-
Pliocene biostratigraphic picks from the Hermine E-94 well on the Grand Banks. The
framework completed by Piper et al. (2005) follows that of MacLean and Wade (1992)
but with a slightly different age interpretation resulting from the data obtained from the
Hermine E-94 well. They defined reflections Q10, Q30, Q40, Q50, Q70, Q80 and Q90
(oldest to youngest). Reflection Q10 is fairly continuous from the upper slope to the rise
and has been correlated to reflection C of Piper and Normark (1989) with an age of basal
Quaternary. Reflections Q30, Q40, Q50 and Q70 are traced over wide areas from the

upper to lower slope but are interrupted in places by MTDs and buried failure scarps,
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especially in the middle slope. Correlation of these reflections from the slope to rise was
done by event correlation of MTDs and failure scarps. Reflections Q80 and Q90 were
difficult to correlate due to shallow erosion and mostly were recognised in less-dissected
areas on the upper slope.

On the upper slope, acoustically incoherent units (a total of six- I, IL, II, IV, V
and VI) are interpreted as “till tongues’ emplaced by glacial activity. The deepest well-
developed till tongue immediately overlies reflection Q50. Acoustically incoherent
bodies exist down to reflection Q30 but it is unclear whether these are till tongues or
MTDs. A 30 ka radiocarbon age obtained from a 56-m-deep failure plane is at or near
Q91, which is just below the horizon of the youngest of six defined till tongues. The till
tongues, compared with dated sections of the J-Anomaly Ridge and Bermuda Rise,
provide a consistent age model corresponding to marine isotopic stages (MIS) 2, 4, 6, 8,
10 and 12 (Piper et al., 2005). Reflections Q50 and Q10 have been correlated to
reflections Q and B of Laurentian Fan (Skene, 1998) using industry seismic profiles

(courtesy of TGS Nopec- survey conducted in 1998) (Piper et al., 2005).

1.6.2 Quaternary stratigraphy

1.6.2.1 Acoustic- and shallow core-based stratigraphy of the St. Pierre Slope

The upper slope stratigraphy of the St. Pierre Slope has been described by
Bonifay and Piper (1988) using seismic reflection profiles and piston cores obtained from
St. Pierre Slope. Five separate acoustic facies were distinguished (designated a to e): a
lowermost sedimentary facies (e) characterized by incoherent reflections overlain by four

distinct stratified sedimentary facies with variable thicknesses of 5-20 metres (facies a to
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d). The lowermost sedimentary unit consists of slumped morainal diamict and proglacial
sediments and has been dated at 11.5- 12.0 ka by radiocarbon dating. Penetration by
cores into this unit was poor (none exceeded 1.5 m penetration) implying that the
sediments are either pebbly or highly consolidated. Sediments of the remaining four units
contain turbidite and rare ice-rafted debris. The sediments are bioturbated and yield ages
ranging between 3.3- 11.8 ka. Sedimentation rates close to the ice margin were estimated
at 20 m kyr'.

Distribution of sediment on the continental slope and rise has been summarized
by Piper (1991). The shelf-edge consists of Late Quaternary sands with variable gravel
patches grading seawards into silty muds. These Quaternary sedimentary sequences
comprise alternating till and glaciomarine beds, the result of repeated advance and retreat
of the ice margin. The slope is composed predominantly of dissected or discontinuous
stratified mud sequences with occasional stumps and debris flow deposits. Thick
stratified mud sequences with minor silt interbeds begin around 3000 mbs! and continue
to the basin. Flooring local channels are Upper Pleistocene to Holocene sand or gravel
deposits (thicknesses upwards of 100 m) that may be accompanied by a drape of pelagic
or hemipelagic sediments. These shallow subsurface and surficial sediments of the St.
Pierre Slope developed in response to Late Quaternary glacial events, specifically the last

major glacial advance of the Wisconsinan glaciation and subsequent Holocene processes.
1.6.2.2 Shallow core-based stratigraphy of Laurentian Fan

Piper and Skene (1998), using information from four piston cores (two of which

are used in this study = 87003-09 and -10) from >3000 mbsl, ascertained the
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