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Abstract

Dacarbazine and Its Structural Analogues:
Systematic computational studies of the configurations, tautomers, tautomerization
pathways and bimolecular nucleophilic substitution reaction mechanisms of Dacarbazine,
a triazene containing anti-neoplastic agent, and its structural analogues.

by Katherine Grace Doucet

Abstract: A monomethyltriazene is believed to be the active metabolite of triazene
containing anti-neoplastic agents and is thought to methylate the O6-oxygen of guanine to
form methylguanine. Methylguanine is believed to be responsible for the observed
cytotoxic properties of triazene containing anti-neoplastic agents. Dacarbazine, a triazene
containing anti-neoplastic agent, has been shown to be the single most active agent for the
treatment of malignant melanoma. Computational studies, including conformational and
tautomer analysis, tautomerization pathways and a model mechanism of action, were
conducted in the hopes that a better understanding of the chemical and physical properties
of triazene containing anti-neoplastic compounds could be provided. This study found
that the tautomerization of a monomethyltriazene is a relatively low energy process and
the tautomer form will preferentially undergo an Sn2 type reaction. It is proposed that
following demethylation DTIC would preferentially undergo tautomerization followed by
an Sn2 type reaction to form methylguanine.
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CHAPTER ONE:
INTRODUCTION

1. Canadian Cancer Rates

Recent publications by the Canadian Cancer Society, the National Cancer
Institute of Canada (1) and Cancer Care Nova Scotia (2) have estimated that 153,100
new cases of cancer will have been diagnosed and 70,400 Canadians will have lost their
lives to cancer in 2006. Canadian mortality rates of certain cancers, such as prostate
cancer, are decreasing, while the incidence and mortality rates of lung cancer,
malignant melanoma and non-Hodgkin lymphoma continue to increase. In Canada,
cancer mortality rates are the highest in Atlantic Canada and Quebec (1,2). It has been
predicted that 38% of Canadian women and 44% of Canadian men will develop cancer
in their lifetime; the increase in cancer is due in part to the increase in the life
expectancy of the Canadian population (1,2). Based on current mortality rates, 1 in 4

Canadians will die from cancer (1,2).

Cancer is a broad term used to describe a group of diseases. There are over 100
types of disease that are classified as cancer. Cancer occurs when cells grow at an
abnormal rate and prevent healthy cells from functioning properly. Masses of

cancerous cells are called malignant tumors. There are four major categories of cancer;
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carcinomas, leukemias’, lymphomas* and sarcomas® (3,4). When cancer cells travel
through the lymph or blood system to other parts of the body the cancer is said to have

metastasized.

Due to medical advances, there are various treat£11ent options available for the
treatment of cancer. The primary goals of cancer treatment options are to remove or
shrink the cancer, kill any cancer cells that may have spread and reduce the risk of
recurrence. Depending on the type of cancer, more than one treatment option may be
needed. Current treatment options include chemotherapy, radiation therapy, surgery,
immunotherapy and bone marrow or stem cell transplants. The 2002 Cancer Care
Nova Scotia report concluded that the most realistic means of cancer control were

prevention, early detection and the use of chemotherapy (2).

" Carcinomas are malignant tumors that occur in epithelial tissues and can affect any
organ or part of the body (3,4).

T Leukemias are cancers that affect white blood cells, when immature white blood cells
multiply at the expense of mature white blood cells (3,4). As normal blood cells are
depleted, anemia, infection, hemorrhage or death can occur (3,4).

! Lymphomas are malignant neoplasms originating from lymphocytes, white blood
cells involved in immune protection (3,4).

¥ Sarcomas are cancers that arise from the mesenchymal tissues and may affect bones,

bladder, kidneys, liver, lungs, parotids and spleen (3,4).
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2. Chemotherapy

Chemotherapy is the use of pharmaceuticals to treat cancer, specifically
cytotoxic drugs used to kill cancer cells. Chemotherapy may be used alone or in
combination with surgery and / or radiation therapy. Chemotherapeutics are designed
to stop cancer cells from growing and proliferating, which shrinks the tumor. There are
approximately 50 chemotherapy drugs currently used in Canada. Most of these drugs

are anti-neoplastic agents that are designed to inhibit the growth of tumors (1,2).

2.1  Anti-neoplastic Agents

Anti-neoplastic agents are chemical agents that prevent, inhibit or halt the
development and growth of a neoplasm, a tumor or abnormal growth of tissue (1,2). It
should be noted that neoplasm and cancer are not synonymous terms. A neoplasm can
be benign or malignant, whereas a cancer is always malignant. Most
chemotherapeutics are anti-neoplastic agents. Chemotherapeutics are administered in

the hopes of stopping and possibly reversing the growth of malignant tumors.

2.1.1 Triazene Containing Anti-neoplastic Agents

Anti-neoplastic agents that contain triazene (Figure 1.1) are proven to be
effective in the treatment of malignant melanoma (skin cancer), gliomas (brain cancer)

and non-Hodgkin’s lymphoma (5,6). Dacarbazine (Figure 1.2) and Temozolomide
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(Figure 1.3) are triazene-containing anti-neoplastic agents.

,R2
R—N=N—N
“R3
Figure 1.1: The chemical structure of triazene, a functional group comprised of three

nitrogen atoms bonded together in sequence.
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H,C . )/
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O
Figure 1.2: Chemical structure of 5-(3,3-dimethyl-1-triazenyl)imidazole-4-

carboxamide (Dacarbazine, DTIC ®).
NH
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S ~N
N I
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Figure 1.3: The chemical structure of Temozolomide (3,4-dihydro-3-methyl-4-

oxoimidazo-[5,1,d]-1,2,3,5-tetrazine-8-carboxamide, Temodal ®)

2.1.2 Dacarbazine
Dacarbazine is a cell-cycle non-specific anti-neoplastic agent currently used as a
palliative” measure for metastatic malignant melanoma (7). The exact mechanism of

Dacarbazine is unknown but there are various hypotheses about its mechanism of

" Palliative measures are treatment that is designed to alleviate symptoms rather than

cure a disease (3,4).
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action. The most widely accepted theory is that Dacarbazine is a DNA alkylating agent
activated by liver metabolism (5,6,7). Other hypotheses include the inhibition of DNA
synthesis by acting as a purine analogue and interacting with the thiol groups (7).
While Dacarbazine is a structural analogue of 5-amino-imidazole-4-carboxamide, an
intermediate of purine synthesis, there is no concrete evidence to support or negate

either hypothesis.

Dacarbazine is currently used as a palliative measure because of the severity of
the adverse effects associated with the administration of the compound. The most
common side effect is depression of the hematopoietic system'’. In addition,
leucopenia and thrombocytopenia are common side effects and may be severe or fatal.
Nausea and vomiting commonly occurred in patients after the initial dose. Other
adverse effects include facial flushing, electrocardiogram abnormalities, orthostatic
hypotension, blurred vision, seizure, headache, confusion, malaise, lethargy and facial

paresthesiae. Diarrhea, anaphylaxis, flu-like symptoms, hepatic and renal failure have

also been reported (7).

Dacarbazine is the single most active agent for the treatment of malignant
melanoma (8,9) but other dimethyltriazenes also demonstrate anti-tumor properties

(10). Dimethyltriazenes are demethylated through an oxidative process carried out by

' Depression of the hematopoietic system results in reduced production of all blood cells:
neutrophils, eosinophils, basophils, monocytes, and lymphocytes (white blood cells);

erythrocytes (red blood cells); and thrombocytes (platelets) (7).
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hepatic cytochrome P450 enzymes (11). The hepatic oxidative demethylation yields a
methyltriazene (Scheme 1), which are known DNA and RNA alkylating agents (12-15).
Methyltriazenes are believed to methylate the O6-oxygen of guanine through a
bimolecular nucleophilic substitution (Sx2) reaction at the methyl carbon. This Sn2
reaction results in the formation of an aryl amine (RNH,), molecular nitrogen (N;) and

methylated DNA (NuCH3) (Scheme 2) (6,7).

Scheme 1: The metabolic formation of monomethyltriazene from Dacarbazine, through
hepatic cytochrome P450 enzymatic oxidation.
CH,  P450 CH, -CH,0 CH

Ar—N=N—N_ — > Ar—N=N—N{ e A—N=N—N"
CH CH,OH A
3 2 H

Scheme 2: Methylation of DNA by monomethyltriazene occurs through nucleophilic
attack by the DNA base guanine on the methyl group of the triazene moiety.
CH, H Nur,H*

Ar—N=N—N~ — N
< N N—N=N—CH, —> AMNH, + N, + NuCH

It is believed that the methylation of the O6-oxygen of guanine (Figure 1.4) is
responsible for the cytotoxic properties of triazene containing anti-neoplastic
compounds (9,12,16). However, Dacarbazine is poorly metabolized in the human body
(17). Recent work has focused on designing compounds that do not require oxidative

metabolism by hepatic cytochrome P450 enzymes to form a monomethyltriazene

(11,18).
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Figure 1.4: The chemical structure of the DNA base guanine.
3. Describing the Potential Energy Surface of Dacarbazine

This study aims to provide an accurate description of the potential energy
surface (PES) of Dacarbazine and its structural analogues in an attempt to provide more
information about the chemical and physical properties of triazene containing
anti-neoplastic agents. Various configurations of Dacarbazine and its structural
analogues, certain tautomers of interest, the tautomerization pathway, and the Sy2
reaction that is proposed to occur between a monomethyltriazene and the O6-oxygen of
guanine, will be included in this computational study. With this information, it is

hoped that more effective triazene containing anti-neoplastic agents may be designed.

3.1  Configurational Possibilities

Configurational analysis of 5-(1-triazenyl)imidazole (TI) (Figure 1.5),
5-(3-methyl-1-triazenyl)imidazole =~ (MTI)  (Figure 1.6), 5-(3,3-dimethyl-1-
triazenyl)imidazole (DTI) (Figure 1.7), 5-(1-triazenyl)imidazole-4-carboxamide (TIC)
(Figure 1.8), 5-(3-methyl-1-triazenyl)imidazole-4-carboxamide (MTIC) (Figure 1.9)
and Dacarbazine (5-(3,3-dimethyl-1-triazenyl)imidazole-4-carboxamide, DTIC) (Figure

1.10) will be performed. Specific configurations of Temozolomide (TEMO) (Figure
7
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1.11) and Mitozolomide (MTIO) (Figure 1.12), analogues of Dacarbazine, will be
studied in an attempt to more accurately describe the PES of triazene containing
anti-ncoplastic agents. The configurational analysis will be restricted to the available
configurations with respect to the nitrogen-nitrogen double bond of the triazene moiety.
A geometrical analysis and relative energy comparison of the identified configurations
will be conducted. A similar study of triazene, including its mono-, di- and trimethyl

analogues has been previously conducted (19).

\

)
/N\ N H
H N=N
KW/
N
H

Figure 1.5: The chemical structure of 5-(1-triazenyl)imidazole (TI).

H,C. H

/N\ — N H
N=N
N
H

Figure 1.6: The chemical structure of 5-(3-methyl-1-triazenyl)imidazole (MTI).

H3C\ lI'
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N=N
H,C \&W/
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Figure 1.7: The chemical structure of 5-(3,3-dimethyl-1-triazenyl)imidazole (DTI).
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Figure 1.8: The chemical structure of 5-(1-triazenyl)imidazole-4-carboxamide (TIC).
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Figure 1.9: The chemical structure of 5-(3-methyl-1-triazenyl)imidazole-4-
carboxamide (MTIC).
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Figure 1.10: The chemical structure of 5-(3,3-dimethyl-1-triazenyl)imidazole-4-
carboxamide (Dacarbazine or DTIC).
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Figure 1.11: The chemical structure of 3,4-dihydro-3-methyl-4-oxoimidazo-[5,1,d]-

N

1,2,3,5-tetrazine-8-carboxamide (Temozolomide, TEMO).
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\ﬂ/ CH,CH,CI
H 0
Figure 1.12: The chemical structure of 3,4-dihydro-3-(2-chloroethyl)-4-oxoimidazo-

[5,1,d]-1,2,3,5-tetrazine-8-carboxamide (Mitozolomide, MITO).
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3.2  Bimolecular Nucleophilic Substitution Reaction Pathways

In addition to describing the configurational possibilities of Dacarbazine and its
structural analogues, a series of model Sn2 reactions involving a monomethyltriazene
and O6-oxygen of guanine will be carried out. These reactions will be based on results
from previous studies involving the Sy2 reactions between mono-, di- and
trimethyltriazene and halide ions (20,21,22). These model Sy2 reactions will use halide
ions as a simplified model for the O6-oxygen of guanine. It is acknowledged that the
halide ions are not the most realistic model for the O6-oxygen of guanine (i.e.; not
demonstrating the same chemical behaviour). Fluoride, chloride and bromide provide
relatively good models for an exothermic, slightly endothermic and an endothermic

reaction, respectively (20,21,22).

The proposed mechanism of action of triazene containing anti-neoplastic agents
is a carbon centered Sy2 reaction. These have been widely studied (23,24). Various
methods have been employed to study Sn2 reactions, including kinetic experiments
(25-34), ab initio quantum mechanical and semi-classical dynamical methods and
trajectory simulations (35-41), statistical mechanical studies (42-49), ab initio and

density functional structural analyses (50-62) and electron-transfer investigations

(63-69).

33 Tautomers and Tautomerization Pathways
This study also includes the tautomeric configurations of 5-(3-methyl-1-

triazenyl)imidazole and 5-(3-methyl-1-triazenyl)imidazole-4carboxamide (Figure 1.13)

10
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and both the gas-phase (Scheme 3) and water mediated (Scheme 4) tautomerization
reaction pathway. The identified tautomers will also be considered in the series of Sy2

reaction pathways.

H H H M
N H L N _H
H,C—N=N—N H,C—N=N—N
ats Y
N N N
H 2
o
MTL T MTIC_T

Figure 1.13: The chemical structure of 5-(3-methyl-1-triazenyl)imidazole tautomer

(MTL _T) and 5-(3-methyl-1-triazenyl)imidazole-4carboxamide tautomer (MTIC T).

Scheme 3: Tautomerization of 5-(3-methyl-1-triazenyl)imidazole

! i
N N I N
TIN= H — % H,C—N=N—N H
H,C N=N Y 3
/ /
P L
H H .
Scheme 4: Water mediated tautomerization of 5-(3-methyl-1-triazenyl)imidazole.
H H
e NN N H — % H,C—N=N E N H
H/J N\ /s | ’ )d
4 >-H N N
Q
A H~O~H

3.4  Analysis of Computational Methods Employed

The final objective of this study is to determine a computational method that is
both accurate and efficient for describing triazene-containing anti-neoplastic agents and
their chemical behaviour.  Various computational methods will be employed

throughout this study. These will be discussed in Chapter 2.
11
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CHAPTER TWO:
COMPUTATIONAL CHEMISTRY

1. Introduction

Computational chemistry (70-73) is a sub-discipline of theoretical chemistry.
Theoretical chemistry, a sub-discipline of physical chemistry, is a conglomeration of
chemistry, mathematics, physics and computer science. Theoretical chemists strive to
develop mathematical equations and algorithms to develop computer programs in order to
predict chemical properties. Computational chemistry applies these computer programs
to specific chemical problems. The solutions provide an approximate qualitative and

quantitative description of a chemical system.

As with any scientific discipline there are various methods that comprise
computational chemistry, each with their own advantages and disadvantages. Three
computational methods used in this study will be discussed including Hartree-Fock
(70-79), Mgller-Plesset perturbation (74-81), and density functional (74-76,82-86,87-98)

theories. The role of basis sets (70-76) will also be examined.

2. ab initio Methods

Ab initio theory is derived from the first principles of quantum mechanics. The

goal of ab initio theory is to solve the Schrodinger equation in order to calculate the
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observables of a system of interest (i.c.; the properties of a chemical system).
Approximations are needed because the Schrodinger equation cannot be solved exactly
for systems larger than H,. However, no empirical parameters are used in ab initio
molecular orbital theory. The fundamental aspects of ab initio molecular orbital theory
will be discussed by examining the assumptions that are applied to the Schrodinger

equation to derive the time independent Schrédinger equation.

2.1  Solving the Time Independent Schridinger Equation

The time-dependent Schrodinger equation describes the mathematical relationship
upon which ab initio molecular orbital theory is based,

v =inly. )
ot

In this equation, the Hamiltonian operator (ﬁ ) is the sum of the kinetic energy operator
of the nuclei (f" » ), the potential energy operator between nuclei (I}nn ), the kinetic energy
operator of the electrons (7%), the potential energy operator between electrons (Vee) and
the potential energy operator between nuclei and electrons (I}ne) such that
H=To+Vm+TetVeet Vse. )
If we assume that A does not explicitly depend on time, we can write the wavefunction
as the product of a time dependent part (¥:) and a space (nuclear and electronic
positions) dependent part (Wx). The equation is therefore separable and the

time-dependent part is easily solved. The separation constant of the time-independent

equation

13
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HY =E¥ (3)
is the energy (£). Under the Born-Oppenheimer approximation we can assume that
nuclear and electronic contributions can be separated because the nucleus is much more
massive than the electrons. We essentially assume that the nuclei are fixed. The total
energy of the system is

Etotat = Eetectron + Enuciei . 4
Under the Born-Oppenheimer approximation the nuclear kinetic energy is zero.
Therefore, the nuclear energy contribution is only due to nuclear potential energy

Z4Z3

A< V4B

Enuclei =

)

and results in a simpler electronic Hamiltonian (Flezec) that can be expressed as

N AW AL ©

i=1 d=1¥id
Under the Born-Oppenheimer approximation, the Schrédinger equation is simplified to
the electronic time-independent Schrodinger equation. In order to solve the electronic
time-independent Schrodinger equation we need more information about the

wavefunction.

If the independent orbital approximation” is applied then the total wavefunction of

a poly-electron wavefunction can be written as the product of one electron wavefunctions

" The independent orbital approximation states that for a poly-electronic system the
wavefuntion can be written as a product of one electron wavefunctions, known as a

Hartree product.
14
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(¢,) called orbitals. Probability theory dictates that the position of one electron is

independent of the position of another electron in the system. The total wavefunction of a

system can then be written as

P2, M) =4 (1)4, (2)4, (3)-- 4 (V) =114, 1) ™

which known as a Hartree product. Hartree products are allowed due to the Aufbau
principle’. The independent orbital approximation introduces a problem because the
position of electrons and their energy contribution are dependent on the other electrons in
the system. The impact of this assumption will be discussed later when the role of

electron correlation is examined.

Another assumption used is the Pauli exclusion principle*, which allows a
molecular orbital to have two electrons of opposite spin (o and B). It is the Pauli
exclusion principle that allows for the wavefunction of a poly-electronic system to be

written as a Hartree product of spin orbitals ( z, ) such that

¥(1,2,...2N) = 107,220 2N) where (1) =de(1), D =42  ®)

and each spatial orbital is associated with an a-spin function and a B-spin function.

However, a Hartree product of spin orbitals is not anti-symmetric. A wavefunction is

T Under the Aufbau principle electrons are placed in orbitals of the lowest possible energy
while obeying the Pauli exclusion principle and Hund’s rules.
! Under the Pauli exclusion principle no two electrons may have the all the same four

quantum numbers.
15
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anti-symmetric when the interchange of any two electrons (i.e.; i, j) changes the sign of
the wavefunction

BY¥(,2.d, j.N)=¥(,2...j,i..N) = —¥(1,2..d, j...N) . )
The Pauli exclusion principle satisfies the anti-symmetry requirement of electronic
wavefunctions by expressing the total wavefunction as a linear combination of Hartree
products. A wavefunction written as a linear combination of Hartree products can be

made to satisfy the anti-symmetry requirement by being expressed as a Slater

determinant®.

To solve for the energy of the electronic time independent Schrodinger equation a
Slater determinant of a known set of ortho-normal spin orbitals must be assumed to
represent the total wavefunction of a poly-electronic system. This is accomplished by

assuming that the electronic time-independent Schrodinger equation Hamiltonian operator
(I:Ielec) is separable. This allows the Hamiltonian to be separated into two Hamiltonians,

the one-electron Hamiltonian (I:I )

A, :Z“%V?‘ZZ—Z‘A" (10)

i 4 Ny

which contains only the terms that rely on one electron and the two-clectron Hamiltonian

(H,)

¥ The use of a Slater determinant to express a wavefunction written as a linear
combination of Hartree products upon expansion generates all permutations of all 2N
electrons among the 2N spin orbitals as well as satisfying the anti-symmetry requirement

and the Pauli exclusion principle.
16
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=3, (11)

which is comprised of terms that depend on two electrons.

Under the conditions and assumptions mentioned to this point, evaluation of the
energy of a normalized poly-electronic system results in three distinct parts, the core

Hamiltonian

HE = J'Zi(l)(——;-vz—;%}yi(l)dq, (12)
the Coulomb integral

Ji= % (1);11:;55(2)61110172, (13)
and the exchange integral

K,=| Iz,-(l)z,-@)rizj )z/(Ddzdr,.  (14)

The core Hamiltonian can be interpreted as one electron moving in the field of the
bare nucleus and is represented by a one-electron integral. The Coulomb integral is a
classical mechanics effect and represents the repulsion between two charge distributions.
The exchange integral is a quantum mechanics effect and arises from the anti-symmetry

principle. The total energy is the sum of the electronic energy;

N N N
EeleczzzHii+Zz(2Jij_Kij)’ (15)
i=l

i=l j=1

and the energy of the nuclear repulsion;

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Enuet =ZZAZB. (16)
RAB

A<B
The molecular orbitals must be known in order to calculate the electronic energy of the
system. Hartree-Fock theory introduces a way to describe molecular orbitals to calculate

the electronic energy of a system.
2.2  Hartree-Fock Theory

The derivation of Hartree-Fock theory from ab initio molecular orbital theory
includes the Hartree-Fock equations and the Roothaan-Hall equations. It should be noted
that Hartree-Fock theory builds upon ab initio molecular orbital theory and provides a

solution for the spin orbitals, which allows the wavefunction to be solved.

2.2.1 Hartree-Fock Equations

The Hartree-Fock equations are a set of integral-differential equations.
Application of the Lagrange method of undetermined multipliers to the constrained

variation problem of finding the best orbitals gives stationary values of the electronic

energy subject to the ortho-normality condition;

Su=<'/’i|9”j>=5v’ a7

18
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where the Kronecker § (J,) equals 1if i=j and 0 if i # j. Here we have introduced
Dirac notation” for the overlap integral (S;)- The ortho-normality condition gives rise to
the Hartree-Fock equations which are expressed as

Fy =gy, i=1,23.,N. (18)
The Hartree-Fock equations are comprised of an eigenvalue (&) known as the orbital
energy of the i™ molecular orbital, eigenfunctions that correspond to the spin orbitals that
need to be solved and the Hartree-Fock operator (13’ ), which is defined as the sum of the
core Hamiltonian ( H “r¢), the Coulomb operator (j ;) and the exchange operator (1& )

and is expressed as

N
F=H"+Y (2]-K), (19)

j=1
The Coulomb operator (j ; (1)) of the Hartree-Fock equations is the potential
experienced by one electron at a specific distance (7,) due to electron two in a spin

orbital ( g, ) and is expressed as
)={x(2 2)dr, . (20)
Unlike the Coulomb operator, the Exchange operator ( K ; )» which is expressed as

K1 { [2,2) drz}z, n e

is not a simple function.

" Dirac or Bra-ket notation is a shorthand method introduced by P. A. M. Dirac.
19
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The Hartree-Fock equations must be solved through an iterative process because
the Hartree-Fock operator depends on the spin orbital used. The requirement of an
iterative process makes Hartree-Fock theory a self-consistent field (SCF) method; once
the orbitals no longer change noticeably they are said to be self consistent with the field
or potential that is generated. While the Hartree-Fock equations are solved through an
iterative process the direct solution to the equations is not practical for use in molecular

calculations.
2.2.2 Roothaan-Hall Equations

The major obstacle preventing the Hartree-Fock equations from being solved for
molecules is that mathematical form of the molecular orbitals is unknown. In order to
solve this problem molecular orbitals of the Hartree-Fock equations are expanded as a
linear combination of atomic orbitals (LCAO). The LCAO approach and the application
of the ortho-normality condition to the orbitals in the Hartree-Fock equations gives rise to

the Roothaan-Hall equations, which are expressed as

i(F,,V —EiS,,V)cV,. =0, u=12..M. (22)

v=l

The Roothaan-Hall equations are comprised of a Fock matrix operator (£, );

core < g ]'
F, =H +ZZPM l:(ylela)—g(u/ﬂva)J , (23)
the number of atomic orbitals (M), the expectation value of the i™ molecular orbital (&),

the overlap integral (S, ) and the coefficient matrix (C,;). The expression that makes up
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the Fock matrix operator is comprised of the core Hamiltonian matrix (H,*);

core 1 < Z
Hy = [o, (1)[——2-V2 —Z—A}%)dq g 24

the density matrix (2, );
OoCcC

P, =2Y c,c, (25)
i=1

and the two-electron repulsion integrals (( y73% |/10') );

(uv|ao) = [[p, (e, (1)%@ (2)e, (2)drdr,. (26)

While the Hartree-Fock equations and the Roothaan-Hall equations are linked
through the LCAO approach and the ortho-normality condition, there are significant
differences between the two sets of equations. One of the most important differences is
that the Hartree-Fock equations can only be solved numerically, which is not practical for
molecules. Additionally, the Hartree-Fock equations are integral-differential equations
whereas the Roothaan-Hall equations are algebraic. This means that numerical values are
used to find the coefficient values of the Roothaan-Hall equations as opposed to
integration and differentiation as is seen in the Hartree-Fock equations, which makes the
Roothaan-Hall equations easier to solve. An interesting point is that the two sets of

equations are both solved iteratively.

The Roothaan-Hall equations are solved by first generating an initial guess for F,.
For example, one can neglect the two-electron repulsion integrals and use H,, to

approximate the initial guess for F,,. Then the eigenvectors for the Hamiltonian matrix
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are used to make a guess at the Fock matrix, which is then used to solve for the initial
coefficient matrix that in turn generates the density matrix, and then the total energy
(Etota1) of the system, which can then be used to generate a new Fock matrix. This process
continues until the coefficients converge. The criteria for convergence are generally the
total energy and the density matrix. It should be noted that there are other ways to solve

the Roothaan-Hall equations.

The relationship between the Hartree-Fock equations and the Roothaan-Hall
equations is very important. However, it is the Roothaan-Hall Equations that are used in
molecular calculations, as the Hartree-Fock equations are not practical for this purpose. It
is important to keep in mind that while the Roothaan-Hall equations are used for
molecular calculations there are some very fundamental assumptions that were made
during the derivation of the Hartree-Fock equations that impact on that accuracy and

usefulness of the Roothaan-Hall equation set.

3. Basis Functions and Basis Sets

While the LCAO is applied to derive the Roothaan-Hall equations to allow for
molecular calculations, a problem arises because the mathematical form of atomic orbitals
is not known. To provide a solution for this problem, the atomic orbitals are represented
by basis functions. These can either be Slater Type Orbitals (STO) or Gaussian Type

Onrbitals (GTO). STOs are expressed as

S5

nim

(r,9,0)=Nr""eY" (9,9) @27)
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where N is the normalization factor and 1" is the spherical harmonics. GTOs are

expressed as

ijrk (}’) = Ni{fj,k (x- R1)i(y _Rz)j (z— Re)k eAa(r*R)z (28)

where N?

i;jx» Rand «aare the normalization factor, the center of the Gaussian function

and the exponent of the Gaussian function, respectively.

It is interesting to note that STOs are very similar to the solution for hydrogen
atoms and represent atomic orbitals most effectively. However, integral evaluation of
STOs is very difficult due to their mathematical form and as a result calculations
involving STOs are generally reserved for small molecules. On the other hand GTOs are
much easier to evaluate due to the Gaussian Product Theorem. This theorem states that
the product of two GTOs on two different centers equals a GTO on a third center (i.e.;
0a9s=¢c). However, GTOs do not accurately represent an atomic orbital but a linear
combination of GTOs may be used to form a STO to outweigh the limitations of both

types of basis functions.

The most demanding part of the solving the Roothaan-Hall equations are the sheer
number of two-electron repulsion integrals which depend on the size of the basis set used.
There are a number of basis sets that can be utilized in a molecular calculation. These
basis sets include minimal basis sets, double zeta basis sets, doubly-split basis sets and the

inclusion of diffuse or polarizable functions to suit the system of interest. The larger the
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basis set is (i.e.; more basis functions that are included) the more variational parameters
that are available, which provides a better description of the molecular orbitals. However,
under Hartree-Fock theory the best that a very large basis set with infinite flexibility can
do is known as the Hartree-Fock Limit. The consequence of the Hartree-Fock Limit will

be discussed in the next section.

4. Electron Correlation

Hartree-Fock Theory assumes that electrons move in an average potential that is
due to the nuclei and other electrons of the system. As a result, in Hartree-Fock theory
the instantaneous position of an electron is not dependent on the position of the other
electrons in the system. This theory is inherently wrong because the motion of the
electrons is correlated (i.e.; the location of one electron depends on the location of the

other electrons in the system).

The correlation energy is the difference between the Hartree-Fock energy of a
system and the real energy of a system and the effect of not including the correlation
energy in Hartree-Fock theory prevents calculations from predicting the real energy of the
system of interest. Some methods, which will be discussed later, improve upon
Hartree-Fock theory by including correlation energy to provide a more accurate

prediction of the energy of a system.

Including electron correlation in molecular calculations is important for a number
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of reasons. While Hartree-Fock calculations give reasonable geometries, the inclusion of
electron correlation will lead to more quantitative results. Electron correlation is also
important for modeling intermolecular interactions, improves properties, provides correct
trends for transition metals and improves both absolute and relative energies. In the next

section, methods that go beyond Hartree-Fock theory will be discussed.

5. Post-Hartree-Fock Methods

Hartree-Fock theory is an ab initio method that uses only the first principles of
quantum mechanics. However, Hartree-Fock theory makes various assumptions about
the Schrodinger equation and subsequently its sets of solutions. Specifically, the
Bom-Oppenheimer approximation is assumed, which does not hold for a true
wavefunction as the wavefunction should be a function of the coordinates of each nuclei.
Additionally, the momentum operator is assumed to be completely classical (i.e;
relativistic effects are ignored). The basis set is made up of a finite set of functions,
where as the true wavefunction is a linear combination of functions from a complete
(infinite) basis set. Finally, the energy cigenfunctions are assumed to be the products of
one-electron wavefunctions, which results in the effects of electron correlation being

included only as an average.

For various systems (i.e.; excited states, transition states) inclusion of electron
correlations is very important for the accurate description of the PES. Methods that are

based on Hartree-Fock theory and include a way to approximate a more accurate electron
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correlation are broadly termed post-Hartree-Fock methods. Generally, post-Hartree-Fock
methods provide a more accurate result than Hartree-Fock; however, the accuracy is at
additional computational expense. There are various post-Hartree-Fock methods, for
example, configuration interaction, coupled cluster, and Mgller-Plesset perturbation

theory.

5.1  Msller-Plesset Perturbation Theory

Perturbation theory uses a factor that prevents the exact solution of the

Hamiltonian Operator in the Schrodinger Equation. In Meller-Plesset Perturbation

Theory (MPr) the Hamiltonian is represented as the sum of the perturbation (fI ") and the
Hartree-Fock Hamiltonian ( "), such that

H=H"+H". (29)
H'™ is treated as the zeroth-order Hamiltonian. Furthermore, under perturbation theory,
the wavefunction (\¥';) and eigenfunction ( E, ) are cach treated as power series such that

Y, =W+ YO + 229D + P9 (30)
and

E=E" +AE" + VE® + VEY ..... (31)
These power series are then substituted back into the Schrodinger equation. The resulting

products are then expanded and the coefficients (1") of equal powers are equated so that
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A" BT = EPTT

A YO | i pEPg® | pOg (32)

A2 HTYO L YO = EFY® + EOWO L EOPIT
This results in a series of equations that are progressively higher orders of perturbation.
Once the coefficients of the same powers have been equated and the power series for the

wavefunction and eigenfunction are inserted in to the Schrédinger equation the energy

expressions are generated such that

E™ =<\me B ’TIHF>

50 = (i i

£~ e (33)
50 = (e | ).

However, in order to solve these expressions the wavefunctions must first be solved and
then the energy expression for the desired perturbation, E”, where n is the order of the

perturbation (i.e.; 1, 2, 3 ... n), can be solved.

It should be noted that the perturbation can be truncated at any point.
Furthermore, depending upon where the perturbation expansion is truncated, different

levels of perturbation theory will be generated. For instance, the MP2 level of theory
indicates that the perturbation was truncated at the second-order energy correction (E> ).
Likewise, MP3 and MP4 indicate that the perturbation was truncated at the third-order
energy correction (E’) and fourth-order energy correction (E"); respectively. It

should be noted that the MP1 perturbation is possible; however, the first-order energy
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correction (E®") simply gives back the Hartree-Fock energy. As such, MP2 is the first

level of perturbation theory that improves upon the Hartree-Fock energy.

In addition to being the first level of Mpller-Plesset perturbation theory that
improves upon the Hartree-Fock energy, MP2 is a widely used method. Furthermore,
MP3 offers little improvement on MP2 but is much more costly computationally. For
improvement upon MP2 results MP4 is generally used. However, MP4 is more costly
computationally and is as accurate as a configuration interaction single double (CISD)
calculation. Finally MP4 is generally the limit for Meller-Plesset Perturbation Theory as
MPS5 offers little improvement on MP4 calculations and is an extremely costly method

when compared to MP4.

5.2 Advantages and Disadvantages of Moller-Plesset Perturbation Theory

As with any theoretical method Meller-Plesset perturbation theory has various
advantages and disadvantages. Specifically, MP2 has some favorable theoretical
properties including easily-evaluated gradients. However, MPn methods are

nonvariational'" and occasionally MP» methods exhibits divergent behaviour.

! The energy calculated with a variational method is an upper bound to the exact energy.
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6. Density Functional Theory
6.1 Hohenberg-Kohn Theorems

Density Functional Theory is based on two theorems by Hohenberg and Kohn.
The first theorem states that for a ground-state molecule the energy and all other

properties, including the external potential due to the nucleus (v(r)) and the total number
of electrons ( NV ), are determined by the ground-state electron probability density ( p(r)).

The total number of electrons and the external potential determine the Hamiltonian
operator, which is expressed as
Y ORI N I I
72 Tl STl baad R
When the Hamiltonian, which is determined by the total number of electrons and the
electron probability density, is used in the Schrodinger Equation it is implied that the
electron probability density also determines the energy of the system. It should be noted
that due to the dependence of the Hamiltonian operator on the electron probability
density, the energy of the system can be represented as a functional** of the electron
probability density of the system where
E=E[p]. (35)
The second theorem states that, for a trial density ( p'(#)) satisfying p'(r)>0 and

J'p’(r)dr = N, then the true energy of the system (E[p]) is less than or equal to the

energy of the trial system (E[p']). In essence this theorem states that DFT is a

¥ A functional can be thought of as a function of a function.
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variational method. The Hohenberg-Kohn Theorems provide the fundamental ideas that

DFT is based on. However, the form of the energy functional is unknown.
6.2 The Kohn-Sham Method

The primary problem facing DFT is that the exact form of the energy functional is
unknown. In order to solve this problem the Kohn-Sham Method is applied. The
Kohn-Sham Method introduces orbitals, known as the Kohn-Sham orbitals, which are
analogous to those used in Hartree-Fock Theory. However, the Kohn-Sham orbitals are
not single electron orbitals. However, the sum of the square of the Kohn-Sham orbitals

must give the electron density, which is expressed as
N 2
p(r) =Y |wF| (36)
i=1

The introduction of the Kohn-Sham orbitals (¥;”) allows the energy functional to be

expressed as a mathematical expression. The Kohn-Sham Method establishes a
relationship between the electron density and the orbitals but does not give a physical

significance to the orbitals.
6.3  The Energy Functional
Under the Hohenberg-Kohn Theorem it was established that the energy is a

functional of the electron density. The Kohn-Sham orbitals were introduced under the

Kohn-Sham Method. The mathematical form of the energy functional will be briefly
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considered.

The energy functional under the Born-Oppenheimer Approximation can be

expressed as the sum of the kinetic energy of the electrons (7] p]), the potential energy

between the electrons (¥, [p]) and the potential energy between the nuclei and the
electrons (V[ p]) and is expressed as

Elp]=Tlp1+ V. [P1+V,.[p]. @37

There also exists an alternative but equivalent form of the energy function. The
alternative form is the sum of the potential energy between the nuclei and electrons

(V,.[p]) and the Hohenberg-Kohn Functional ( F,[ p]), which is expressed as

Ep]=V,[p)+ Fylp]. (38)

The Hohenberg-Kohn Functional

Fulpl=Tlpl+Jpl+ E [p], (39

is the summation of the kinetic energy functional

_N xks] 12
Tlpl= 2 ¥|-5 Vi

‘P> (40)
the classical Coulombic interaction between the electrons

Jlp]= jjp(”)p(’ drdr’, (41)

and the exchange correlation functional

E. p]1=Tlp]-T[p]+V.[p]-Jlp]. (42)

The exchange correlation functional suggested by Kohn and Sham is the summation of
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the difference between the true kinetic energy and the kinetic energy functional and the
difference between the non-classical portion of the potential energy and the Coulombic
interaction. The exchange correlation functional is a non-classical term and describes the
repulsion between electrons. The various approximate models of the exchange

correlation functional are what differentiate the various forms of DFT.

6.4  The Kohn-Sham Equations

The Kohn-Sham equations are introduced due to the application of the
Kohn-Sham method to the Hohenberg-Kohn theories and the introduction of the
Kohn-Sham orbitals. The first important step in developing the Kohn-Sham equations is
the introduction of the Kohn-Sham orbitals, which have previously been described. A

reference Hamiltonian operator

N 1 N
Hy =2 5Vi4 2 0()= by, (43)

describes a reference system of N-electrons that were non-interacting. The electron

density of the reference system has the same electron density as the interacting system.

The introduction of the one-electron Hamiltonian (4, ;) and the alternate form of

energy functional provides the basis for the Kohn-Sham equations. As previously
mentioned, the Hohenberg-Kohn Second Theorem states that the DFT is a variational
method. The electron density is such that the energy of the system at a minimum and the

electron density integrates to the total number of electrons in the system (i.e.;
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I p(r)dr=N). The mathematical interpretation of the Hohenberg-Kohn Second is an

Euler equation that is expressed as
S(E—-pup(r))=0 (44)
where E is the energy, u is the Lagrange multiplier and p(r) is the electron density.

Using the Hohenberg-Kohn Functional (F,,[p]), the kinetic energy functional (Z.[p])

and the classic Coulombic interaction between electrons (J[p]) there is a Lagrange
multiplier;

T 5J SE, o) .,
y=ve/f(r)+5. where vejf(r)zv(r)+§—p+ 5 =v(r)+ | p— dr' +v (r), (45)

that satisfies the Euler equation formed from the Hohenberg-Kohn Second Theorem.

The Lagrange multiplier introduces an effective potential (v, (7)) that in turn

introduces the exchange correlation potential (v, ). The latter is a functional derivative of

the exchange-correlation functional (i.e.; v, = :“ ("”)) whose mathematical form is
o(r

unknown thus preventing DFT from being an exact method. The introduction of the
effective potential by the Lagrange method of multipliers generates a mathematical form
for the potential of the system that can be used in the one-electron reference Hamiltonian
(h.;)- This form of the one-electron reference Hamiltonian in combination with the
Kohn-Sham orbitals yields a set of equations that are analogous to the Schrodinger
time-independent equation and are known as the Kohn-Sham equations. The Kohn-Sham

equations are expressed as
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RESWES = oS¢l =12 N (46)

where l;iKS =—%Vi2 +v,,(r), eX is the energy of the i™ Kohn-Sham orbital, and the

N
Kohn-Sham orbitals (V) satisfy p(r) = > |¥ [
Due to the manner in which the Kohn-Sham equations were originally derived,
they share certain similarities with the Hartree-Fock equations. Like the Hartree-Fock

equations, the Kohn-Sham equations are one electron equations. The Kohn-Sham

equations must also be solved iteratively. They both have a one-electron kinetic energy

operator (—yz V?), as well as terms that account for the potential energy between the

electrons and the nuclei and the potential energy between the electrons. What
differentiates these two sets of equations is that the Kohn-Sham equations contain the

exchange-correlation potential (v, )

7. Types of Density Functionals

It was mentioned previously that the form of the exchange-correlation functional
distinguishes the various DFT methods. Due to the popularity of DFT methods, there are
a variety of exchange-correlation functions that are available. Some of the more common
and popular forms will be discussed in the current section. These include functionals
which employ only the Local Spin Density Approximation (LSDA), those that employ

the Generalized Gradient Approximation (GGA), and Hybrid Functionals.
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7.1  The Local Spin Density Approximation

The Local Spin Density Approximation (LSDA) was first described by Vosko,
Wilk and Nusair thus the method is sometimes abbreviated VWN. The basic
approximation made in LSDA is that the electron density is uniform throughout the

system and is expressed as
ER = [p(r)s, dr, (47)

where p(r)is the electron density, &

. 18 the exchange-correlation and their product is
integrated over r.  The form of the LSDA functional is similar to the
exchange-correlation energy functional for a uniform electron gas. In order to achieve
this uniform system under LSDA, the electron density of a molecular system is divided
into infinitesimal parts. Furthermore, under the LSDA it is proposed that the

electron-correlation energy functional for a non-uniform system can be summed from the

infinitesimal portions that comprise the system.

Under the LSDA method it is assumed that the results are more accurate than
those given by Hartree-Fock because the electron correlation and the electron exchange
are both incorporated into the mathematical form of the function. However, this is not the
case. The accuracy of LSDA is on par with Hartree-Fock. The problem with LSDA is
that it is only valid for a system whose density varies slowly, which is not the case for
molecules. As a result, the accuracy of density functionals based on LSDA are generally

poor and the qualitative results for trends are sometimes incorrect.
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