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Abstract

Enhancing Dykeland Resiliency in a |
by Graeme Mat heson
Mar ch! 0220 2 0

Dykel andIlsyiamg@g &dmoevas created by ttthe recl
construction of dy kwehsi cahn darrees hiai deenhhef rianspt ar cutcs
climat @dycharegeresence of robust foreshore
infrastructure. This study |l ooked at the i
have hgdeadm!| saltmarshes at Ivasni ohe 8Bpaytiod
Fundy, . C&h aglrai ncdareyssei gonfiffoirceasnhtor e sal t mar s h
progradation were a result of natur al proc
precipitated significant cBamrgew pint 4 ,hewlpioc
excavated swaths of saltmarsh excavated fr
were also studi eaerdahling! @ nafurdomathin@eot s okt war
Eight out of the 13 btoor rbteliipngtiat sbudiaee wah
only reduce dykel anthedesgmltenmy in the sho

Keywobyllsel and, Climate Change, Sea Level
Adaptati on, Mi tigati on, Managenfernddmt Uonma nn
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Chaptlent AodtuctResnearch Project

11l ntroducti on

Dykel andlsyiamg & oemasl tomarfsohemert hat have b
fromntertidal fl ow by the construction of d
(novascotia. ca, 2013). As -tai de sludvel sdyrkaek ian
particularly susceptebdei . cbliss asus cemtdial
exacerbated by sea | evel rise (SLR) and ot
in the frequency and magnitude of storm ev
Furthermore, as sea | ewvel auvitmcoenpaets @awam
|l andward side of the dykes decreases el eva
and other human uses (Allen, 2000). As pop
by dykes, and the disgdarnidt yelleestawd eom watcare a
are becoming |l ess resilient to coastal flo
many dykes can be topped to prevent coasta
often prohibitive utcd urep i al Idydkyekanidsf fasan

2012) . Fort

c

nately, saltmarsh ecosystems,
present on the seaward side of dykes and c

climate cha

5

g ev,e nSLsR g(tGaeadtla,id 2 @1t hhee Mal , 2014;
2016 This thesis focuses on foreshore mars
focus on their r ol égrieagerniecycca setaasli ndge freensc d i seyns
Resiliency iIis defined as the ability of
i mpacts of a hazardous event (I PCC, 2012) .

enhancing, coast al resiliency iIis the prese



egcsystemGriSat tetn al , 2015) . Sal t mar shes, ar

mangroves, provide coastal regions with a
coast al resiliency by mitigating many nega
and-l eeal rise (SLR) (Gedan et al, 2011; Te
Rend-n et al, 2019). Chief OGampagistythesei &
wave energy (M°Iller et al, 1996; Gedan et
of saltmarshes to attenuate waves I s contr

height, and the type, rigidity Badbdensety
al , MXIllller et al, 2014, Ander stomy asnal tSma rt shh

ecosystems are viewed as a viable source o

i nfigo egermehyy br i d coastal defence iGrfireastertuatly
2015; Narayan et al, 2016)actnethbse hgbth
or secondary source of coast al protection,
Nat et al, 2016) . I n dykel ands, saltmarshe

reducing the frequency windhihylkasinfyr@ast wa

al, 2016) .

Besides wave attenuation, saltmarshes i
direct ways as well. Saltmarshes are also
similar to, or ngraenataemp Iteh asne,diSiemtgisweppl vy (
2001; Temmer man et al, 2012; Kirwan et al,

saltmarshes can continue to provide protec

future climaterdlbaengduanchegamrilegvealnl i ke ha
protection structures, saltmarshes can reb
(SutGtrorer et al , 20drhegy HMyhbrsi dnakeastgaleemr ot

2



i nher
of dy
prot e
human
i mpac
negat
Speci
progr

inter

frequ

al , 2
reduc
wi de
ot her

dy k el

ently mor g rgeas<siyl isg/rstt etmsa n axtdr iudttli mat e
kel ands t hfesnalelt mabeh#doawbder component

ction, they must remain healthy and r
interveheiontegnitwmpattsal t mar shes.

ts, the i mplementation of coastal str
ively, affect the ecomorphodynamic pr
fically, chraamiess i nnarmrcpmecipmiotdat e or ¢
adation (horizontal growth), accretio
action of vegetation, hydrology, sedi:
ence | andf or m emo repchoomoor goyh. o dFyunrat nini ecrsmoi n c

created by the formation or changes i

t, mal adaptation is an obstbhaacsieed t o t h
al defence.

ti matet yhesahom only increase dykel an
ency and intensity of wave interactio
wing a storm event, and by s-&guestet]i
018, vaDke6et Woll enburg et al an0d18) . TI
es the critical dyke elevation to pre
enough (Vuik et al, 2016). This can al
iadykastructur e, or on projects that a
and, further increasing the resilienc



1.2 Project Context

Dykeland | andscapes ex,bst aoouhdmihedglt
Vietnam, Ne€hmeatiaamdsFrance, Engl and, USA, &
Page, 2012). This thesis examines dykel and

Nova Scotia, Canada. The Bay of Fundy is h
(50ft). The a®aysesnobdeé giuondsy with varying tidal
hydrodynami c ecpaspendedssedsmént concentra
The Bay of Fundy also has a | ong history o
| and dati Mg alla akn tsetttHers of the 17th Cent
2004). Since then, saltmarshes in the Bay
of which has been | ost as a result of recl
been a dcentaicnue e; hloawsgallyk et haiill ari gnegstende s
occurrdd®s0@d alhleowi ng the i mplementation of
Rehabilitation Act (MMRA), in 1949 (Millig
225km of newstywket wdswcbh over 27, 000ha of
reclai med or revamped in Nova Scoti a, New
(Milligan, 1987). I n 1970, the responsi bil

Nova Scotia Departemdmi | o0 fi gAqr i AWI87) .

Today, Nova Scotia has approximately 24:
approximately 20,000ha of I and that is und
of Agriculture, Land Protect2onn®@vyascotoina .
208L. This responsibility is extended to th

i mpl ementation of rock armouring on the dy

2 081 . Many of the dykes in thédeprowvwirmnge nladv
4



nstr

cur

edi ¢

Nov

Nov

nage

vest.i

ada

Il t ma
al ysg
ve |

. €.

uct9mMo6 Cortkatl vy, many of the dykes
during a high tide. Wi th sea | evel r
t levels could increadd onfdiangg mudH a
a Scotia unless the dykes are topped
endeavor, which is made worse by rel
esult, the NSDA hasgienplteamemn @tde sto mtet
a Scotia including managed reali gnme
ation, l' i ving shorelines, and borrow
rshes are an i mportanh gdggkelahdcoast
ment . Thiigkipnardo jseucptp orretc lbaynvde bceo IN SalbAo r a t

common structures and stra

«©
Q
—
@D
—
>
@D

pt to, and mitigate, coasstilgdldioon, n:

, Is to identify how these structure
managed and i mplemented into the co
i ng dykeland resiliency.

esis Organization

si & hfesl | ows a manuscript style for mat
mmon dykeland practices, i mplemented
rsh integrity over various ti me scal
implwanent ed to examine how a variety
nfl uenced saltmarshes over different

indi vi dual marsh to estuarine) scale

al wsitemS (DSAS) (Thiel er, 2009) and Analy



(AMBUR) software (Jackson, 2009) to determ
Chapter 3 examines whether borrow pit exca
i n theeliteamatbhe considered a sustainabl e m
materi al i n the context of contemporary dy
aeri al system { Ud@d)t i @amd (StFt™Myctsworfé war e was
vol umet rafc s<eédinmgent i n the borrow pits foll
changes were supplemented with measur ement
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position of the foreshore edge reflect the
provide coast al protectiengsaadandnatrisédr andr @y
infrastructure system.

Sal t marsh erosion and progradation (1. e
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2009; All en and Hasyeltitec UOdgdi)on Thi eacaus cC:
erosion or progradation at the foreshore e
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and engineered tidal mar shes in terms of w
accommodate changes that ocda(uFrriiendra cshtsataend
Perry, 2001, p. 7). Bayv od odi nigmptl heinse,n tiitn gi smap oa

practices.

This thesis will examine the ecomorphod
saltmarshes to the i mplementation of fl ood
strategies as well as charegles hiimghdat drualbid

estuary at both the Blad twanmlk hprasmsle retsd di alr @ me
focus of previous morphodynamic anal yses b
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Dykes: (dikes, levees, embankments) are
elevated earthen or engineered walls that
prevent coastal flooding. Historically, dykes
were usedto cut land off from intertidal flow
to create agricultural land. in a process called

reclamation.

Borrow Pits: Excavated swaths of
saltmarsh usedfor dyke topping material.
Botrow pits are a traditional techniquein dyke
building. and were excavated using dyke
spades. Today. botrow pits are excavated using
heavymachinery and are much larger asa
result of the need for material to adaptto SLR.

Dredging: Involves the in-situ removal of
material from the estuarine bed and banks. The
aim of dredging is often toimprove navigation
or to expedite flood water away from
developed areas.

Managed Realignment:

Involves the relocation, or set-back, of
dyke infrastructure allowing for
reclaimed land to revert back to natural
saltmarsh habitat. Saltmarsh habitats
provide protection to the dykes and
upland by attenuating incoming waves.

Rocking: Implemented to stop erosionby
hardening the shoreline. Rocking and seawalls
are used to prevent both channel and wave
erosion. In the Cobequid Bay Salmon River
Estuary. rip-rap is usedfor shoreline and dyke
armouring.

Aboiteau: A one-way sluice gate that allows
water to drain from the upland during low
tides. Athide tide the gate closes, preventing

tidal flow from entering the upland.

Kickers: Structures designedto deflect, or
“Kick™. channels away from estuarine banks in
order to prevent shoreline erosion. Originally
implemented as Gaspereau wiers. dykeland
managers realized their usefulnessasa
shoreline protection technique in the early
1900’s.

Photo Credits:

1) wvan Proodij, 2016
2) Matheson, 2014
3) Matheson, 2014
4) Matheson, 2014
5) Bowron, 2016

6) CBWES, 2019

7) Matheson, 2014

Figure 1: A list of commorstructures and strategies implemented in hypertidal estuaries around the world and in the Bay of Fundy. These will be

the focus of this study.
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Tablel: Summary of common flood and erosion mitigation structures and their recoftieghce on saltmarsh ecomorphodynamics.

Structu

System Response

Aut hor (

Dykes/Levees

Reclamation Reclamation involves cutting off a saltmarsh from tidal flow, usually via the
construction of a dyke, or embankment. The saltmarsh is drained and theséaisdoften
converted to agriculture. Over time, saltmarshes on the foreshore side of the liecl@arat
accrete, while autocompaction on the landward side can cause the land to subside, making
reclaimed less resilient to SLR.

Reduction of tidal prism: Dyke effectively reduce the crossctional area of estuaries, which
decreases the tidal prisaind tidal velocities. Deposition occurs when the tidal velocities are ng
longeradequate to transport sedimdfitvave action is limited, the net effect of these changes
sediment deposition, which leads to the creation of new saltmarshes on therfosedé of the
dykes.

Coastal SqueezeDykes represent a hard boundary that prevent saltmarshes from retirdatidg
in response to rising sea levetsmbined withwave action. The limitation of horizontal

accommodatiomspaceoften leads to in situ net losses in saltmarshes. It can lead to overall log
estuarine saltmarsh if the eroded saltmarsh material cannot adequately deposit in other are

Alters bathymetry and/or hydrology: In the mixed and fluvial portion of egries, dykes can
confine the lateral movement of flood and ebb channels. This impacts the location of erosio
deposition occurrence. Furthermore, channels that are confined laterally can transfer erosio
energies from the walls of the channelsthi® beds. This can lead to channel deepening, and
potentially reinforce the location of these channels.

Allen, 2000, Doody, 2008

van der Wal et al, 2002;
French et al, 2005; van
Proosdij and Baker, 2007
van Proosdij et al, 2009

Doody, 2004 Wolters et al
200b; Dario and Chmura,
2013

van Proosdij and Baker,
2007; Pye and Blott, 2014

Dredging

Sediment removal Dredging practices aim to remove sediment from an estuary for navigatio
or flood abatement purposétthe sediment is not redistributed back into the system, dredging
leadto large net losses of sedimgwhich can reduce the amount of sedinfentsaltmarsh
platforms.

Blott et al, 2006

13



Alters bathymetry and/or hydrology: When dredging practices are isolated to one channel (i
ebb channels for navigation), they can potentialfjuencethe capacity of both channels to

transport sediment. This can influence gediment transport patterns within the estuary and cg
either increase atecrease the amount of available sediment in an estuary.

van der Wahnd Pye
2004; Blott et al, 2006;
Wang et al, 2015

RockingSeawalls

Alters hydrology: Rocking can significantly reduce the interaction of hydrodynamic forces an
saltmarshes or other coastal landscapes. This provides protection for saltmarshes limiting th
amount of in sitterosion butan limit the availability of sediment elskere in the estuary.
Furthermore, the ends of rocking or seawalls can experience scour leading to an increase ir|
that might otherwise occur.

French, 2001; Bernatchez
and Fraser, 201

Kickers Groyne$

Alter hydrology : Kickers deflect the thalwegway from saltmarshes in the fluvial and mixed
portions of an estuary. The result of this is a reduction in ebb velocities, creating an environi
that is conducive to sediment deposition and saltmarsh progradation.

Klingeman et al, 1984;an
Proosdij and Matheson,
2015 This study

Borrow Pits

Alter sediment transport: By creating artificial tidal channels, or by enhancing existing chann
borrow pits alter sediment transport on the platform by providing a conduit for sediment to th
areas of the high marsh it would not normally reach. Also, by deepening the ecietimels,
borrow pits act as a sediment sink and trap sediments that might reach the platform in a nat
tidal creek system.

Alter hydrology : Borrow pits can significantly increase velocities within the saltmarsh platfor
causing scour and erosionptaces that may not experience said forces except during large st

Sediment Loss Borrow pit excavation constitutes a significant loss of sediment on the saltmg
scale. Large borrow pits can represent a loss of >10,960sediment in a single msh.

Pye, 1995Dale et al, 2018
This study:Chapter3

Managed Realignment

Saltmarshrestoration: Managed realignment projects reintroduce reclaimed agricultural land
tidal flow. This results in the rapid deposition of sediment creating large intertidal mudflats w
are then colonized by saltmarsh vegetation.

Increase tidal prism: By opening eclaimed land to tidal flow, the local tidal prism is increased
This can lead to erosion within the restored saltmarsh and in the tidal creek networks of adjq
marshes. Breach channels can also expand into natural marshes if not implemented correct

Garbutt et al, 2006;
Stronkhorst and Mulder,
2014;Wollenburg et al,
2018

Friess et al, 2014

Aboiteau

Alteration of sediment supply. Aboiteau management has shifted in the past century favourir]
fewer amount of larger aboiteau over a higher number of smaller aboiteau. This has conseq
on where and how much sediment is introduced into the estuary from the upland. An increas
sediment due to aboiteau alteration can lead to increased availability for mudflat/saltmarsh
development, and vice versa.

This study
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Aboiteau channel migration The channels created by aboiteau can be consigidaabé
depending on the size of the drainage basin they control. During large events, the channels
migrate significantly leading to rapid and significant erosion at the foreshore edge. In areas
high suspended sediment concentrations, the relitestu channel can infill rapidly and lead to
significant periods of saltmarsh colonization.

This study

NATURAL DRI VERS

Natural Channel Migratior

Erosion and progradation of foreshore edgeFlood and ebb channels can be move quite
dynamically within the estuarine basin leading to significant changes in location of foreshore
saltmarsh edges. When channels mawelward andnteract with the foreshore edge erosion cal
occur quite rapidly by uretcutting saltmarsh cliffs. When the channels move seaward, they ¢
often | eave behind a Adepositional wedge?o
Once this sediment reaches an appropriate elevation in the tidal frame, saltmarsh ¢a@ colon
leading to rapid progradation.

Pringle, 1995Gabet,
1998; Pedersen and
Bartholdy, 2007; Chauhan
2009.

Wave Action

Erosion at foreshore edgeWave actioris a driver of erosion along the foreshore edge of
saltmarshes. Erosion occurs via a fewett#nt mechanisms, including the undercutting of
foreshore saltmarsh cliffs and through large block failures at the foreshore edge.

Chauhan, 2009; Leonardi
and Fagherazzi, 2014;
Leonardi et al, 2016.

Tidal Asymmetry

Control on net sedimenttransportation: In flood-dominated estuaries, the net direction of net
sediment transport is usually towards the inner estuary. This typically increases the availabi
sediment within the estuary, which is then availdbidhe creation and expansiofiintertidal
mudflats. These mudflats can be colonized by saltmarsh vegetation -tloetdiated estuary, net
sediment transport often results in sediment leaving the estuary to the greater basin. This m
that sediment lost to erosion may not belegosited within the estuary, which leaves less for

mudflat/saltmarsh development.

Dronkers,1986; Fredrichs
and Perry, 2001;
Dalrymple et al, 2012.
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2.2 Study Area

The CobeigualdmoBrayRi vet hBEshoatheastern por
Bay of Fundy, I NFNg®de¢Scat iaa h-yQamaddlakbstam
with a tidal rbegpepl eangeedamy . Wms hap, wR OO &
ephemecreali s present Theedigrhemtt itrh etilse sG@ehmre q
Sal mon River Estuary consa@sstes spirlitmarni Ityh eo fo
mi-stuary (sampaheésSepkembéen) Mayvyan Proosdi |j
estyuaxropsiesiosnohahi hg to medium gr avel I n tFh
Sal mon River consists of medium gravel dur
faCBCIL, )208bspended sedi ment gdldipc ¢ mgtktdt0i0o n
lin saltmarsh tileulr bdhdanne Inmsa xarmuumd whi ch ¢
along tdhdeteestthvarlyar@ree vida dedtl &laynageed O, 2020

There is a Il ong history of dyke buildin
Estpyadgting back to the 17th Century. Acadi
reclaim, saltmarshes andl«ds0dd BobeakneyVy, t2@0 -

practice of dyke bui l85E5§ hpevresviegt, e dnatntyr awy &

aea fell into a state of disrepair by that
Government of Canada stepped in and establ
Rehabilitation Administration ( MMRA), whic

agriculdvuirml Ndw&keScotia and New Brunswi ck (
dykes in the Cobequid Bay Sal mMooinsORAweér Est

19%0&AGnd are now currently managed by the N
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( NSDA) , Land sRrdtatneyc tdiyokne sDiivni t he province a
agicultural standard wh( Adr iacwletpursalp eMa rodh |
Conservati ddo weote,r ,2®®0)d.evel opment as moved
these dykes naoawtpructteiate vaintda lchoemfeéB RA adr @ na
responsible for the maintenance of over 26
foreshore marsh, and the excavation of bor
2018). The NSDtAhais®tsr setvieread ardd strategi es
mitigate and adapt tdionohsttahgfltooking, akd
(Municipality of Colchester), and managed

The |l egacy of dyke buil dimg ampdambi onen

sal t mar s hbeesquind tBheey C®al mon Ri ver Estuary. A
have been | ost in Nova Scotia, with as muc
(novascot Aa. aatrrei@gQlg)udy willylobkthe see

i mpl ementations mentioned above can enhanc
examining how they have influenced saltmar

80 years.
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Figure 2: Study area map showing the locatiofiforeshore saltmarsh and dyke infrastructure as
well as the exterdf the various process dominated zones in the Cobequid Bay Salmon River

Estuary, Nova Scotia, Canada.
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2.3 Methods and Materials

I n order to measure charnde ei.n etrtoes i fomr ea:
progradation) a | arge dataset of i magery w
Digital Shoreline Analysis System (DSAS) (
Boundaries Using R (AMBUR) ( Jaacsk sroenp,o r2t0e0d9 )a

End Point Rate (EPR), which is the rate of

successive Iimages along a transect.
The i mages used in this analysis includ
i magery obtainedrifalbmveaehi chemaggudaMd) aeal |l of

into the NAD83 CSRS EPOCH2010 UTM Zone 20

date as far back as 1938. The foreshore wa
these images in ArciMaepckKéed 5f oranguavlaist ylouwdn t
i mages were only wused if tthiedye wtea ee rcsayrt ai rtel
foreshore was visible. Since these i mages

georectified, andeach ysatn afhefiar esehsorl euth conr
a given year has its own | evel of error (i
Error (ESP). The ESP associated with set o

Equati oShoreline Position Error (Tibbetts a

Oi n Oi 0Q 0©¢
wher e, Esp is the shoreline position er
of the image rectifi gatainan,EoEd si & hteh e hair gil
which is two metres for each | mage. (Ti bbe-

2018). The shoreline proxy offset was gene
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e Present Day Dyke Centerline

Transects

Foreshore

Fig8&reAn example of how transects were edit
foreshore processes.

Analyzing Moving Boundaries Using R (AM
detr mi ne the EPR of the foreshore along eac
the rate of change at the foreshore edge a
whereas mean EPR is the mean change al ong

i ntaes. AMBUR uses the transects and shorepo
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digitized saltmarsh polygons) generated 1in
tranEPRtasing the basic equation (2):
Equa&®i okagt i on for calculating End Point
'06'\(u
~ Y
Where D equals the distance along the t
the year the iUsageg wase dEStPaivmehdr.eser f nomi eq &

bet ween any successive year can be calcul a

Equation3: Potential error in EPR between any two images.

05y _OY0 OV
YUY
These error values are reported in the

di scussing fwWhers hoalec clhathigregq EPR, the | ast
chosen in AMBUR, meaning the EPR were cal c
away tfrecemiyke) in each respective saltmarsh
for the calculation of EPR independent of
out puts from AMBUR were used in the anal ys

t hr ouaglhlouitmages and the foreshore width alc
corresponding i mage. The mwas WBP&ERboOtfo each
visualize change at the saltmarsh scale th
value wadh ausaed etrda ze the mean direction and
saltmarsh between al/l the I mages. 't i s I m
of erosion and progradation even though on
variati oni timi c heaangghe mvar sh more cl osely, the

within a marsh was al so examined to determ
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Finally, to capture the variability of mov.
transectllshetcwssnweenua enchgtes i denti fy signifi.
all owed for the capture of episodic change
ant hropogenic alterations within the inter

Significant thédngdsawetbosdefymat dexcaed
from the mean change rate meadsaumienda taed bsoctahl
The -siwgppma changes were calculated at the ir
EPBnd st andarked cthe tiraatniscerct using the equat.

Equation4: Equation for calculatingignificantchange.
BOU 'Y
3

G

Significant chdoagesatedthenpeprweersescal cu
EPR between succesangsectyeblFs gl oedodnaanhadt e5d) .
zones were the tidal/wave, mixed, and fluv
Dalrymple et al (1990). This was done bec
di fferently withrdawentfil®mds tamuwcdauiroesnoirnopees,c
i mpacting EPR and saltmarsh evolution in d
ecomorphodynamic responses, and ultimately
it was expected thatgmredteesr oifn cthlmer glei gvloaurl de
tidal/wave) than the | ow energy zones (e.dg
Condi tional statements in Excel were used
transect between anwht wb werceessruei gyeaed
were real changes, or a false positive as

boundary)
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ALL transects in zone

Raw Distance from Baseline

Differential Distances between Years

TransectiD 1938 1975 1994 2013 1To2 2To3  3To4
2 115.7 425 258.2 812 3068 -164.2 -177.0
3 80.5 4489 2716 68.1 3684  -177.3 2035
4 219.7 509.7 296.6 725 2901 -2132 2240
AMBUR » s 2113 5123 314.8 64.9 3010 -1975 -2499
6 2184 5953 334.1 64.9 3769  -2612 -2693
8 225.8 6228 349.1 706 3970 -2737 2785
9 244.9 656.6 368.1 806 4118  -2885 2875
10 263.0 667.0 387.7 %06 4041 -2793 -297.2
EndPoint Rate between Years
T2 2To3  3To4
83 -86 -9.3|
100 -93  -107 ; % ;
s a: md,  lppp Distance, — Distance;
81  -104 -uz| == Y Y
102 137 -142 ear, —rearqy
107 144 -147|
111 152 -151|
109 147 -156
End Point Rate between Years
1To2 2703 3Tod4
Z EPRn 20 Erosion Al QAQC
n i 20 20 Progradation 7.8 I
8.1 Is EPR real? | Yes
No -
Ecomorphodynamic
Delete EPR Analysis
Figbrewor kfl ow for validating and identifying

S
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Once the significant changes weelkyverif

using knowledge of the ecomorphodynamic pr

hyperti dal estuaries. This method of exami
changes through the | ens of mor phodymamics
Wal et al (2002), and van Proosdij and Bak:
change rates was facilitated by the variou
data collected for the Marshl amadsé$ uMdteldag hEev
and | ocation of the i mplementation, upgrad

aboiteaux and dredging.

2.3.1 Assessment of error reporting for EPI
The uncertainties in this study shoul d
restoloun and rectification aecurnanay i ®fn tolie eir
primarily an artifact of the digitization
uncertainty of the foreshore edgdketleorcmitnen
mor e ambiguous showaltiemed ., neuqdHWL9 tolre meiam

( MHW) , which is delineated using changes i

saltmarsh versus mudflat i s mucédsoblkessi ambi
i magery, yet maintains a value of two metr.
bl ack andr eshaltwet,i drow aeri al photographs. F L

specific estimations of shorelreretpforgtan

error and i mage resolution.
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2.4 Resul ts

I n total, the End HRd&i@ntta nCsheacntgse aReartreqg a( nEaPl
53. 8k m.ofOf dlyBKie# saen S3e2e ¢ rse earn®&dWege prograding
(Fi ghTlee ti dlalmiwated zone in the Cobequid
was erodi ng0.a¥ytR0 mhetamhiolfe the mixed zone we
mean rOamBetNOf.mly*( TabiTéde2X¥ |l uvial zone was the
progr adviarsgndeorsdo at me tTRGa.mgt.ofFudr.tlher more, t h
zone showed the greatest vari atnmytnForn ( EPR
context on marsh | ocations refer to Figure

Table2:EPR Statisticgeneralized for each process dominated zdhe.error associated with
mean EPR is the mean of the ESP errors for all years.

Dominant Number Mean (m-yr) Standard Significant Significant
Process of Deviation Erosion Progradation
Marshes (m-yr) (-2 Sigma) (+2 Sigma)
(m-yr) (m-yr)
Tidal/Wave |5 -0.9 0.1m-yr* | 3.5 -7.8 6.0
Mixed 13 -0.6£ 0.1m-yrt | 6.1 -12.7 11.5
Fluvial 8 0.1+ 0.1m-yrt 1.6 -3.2 3.3
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Figure 6: Percentage of total transects per EPR raage zone

EPR in the tidal/wave dominated section
estuary weawwt lpegatoimi e . Here, average rates
1.7 eyttt o NO.@yE(Tabl(eFi3gur §he martshhe tghraeta theasd
mean erosion was NSO066 Roun-#i.NRamlysth, whi ch
bet ween 1938 and 2013. The greatest rates
with ratebOm&lomeadiumrged in front of d450mi of
asl6 NB.mtyt. The only marsh edge in the tidal.
NS114 Great Village, whioiyntah adgme dare emange
foreshore. However, this marsh was reclaim
mean foreshore pr olgo.a Abtedtowme eant 139 X da taen o f2 01

the significant | 0ss2.05.0k afrtmdssxhi sasrieoan)ave

28



Table3:ERP statistics for wave dominated zohke error associated with mean EPR is the ESP

error divided by the range of years between the first and last image.

Marshbody # Mean Standard | Significant Significant Max Max
Tract Images | (m-yrY) | Deviation Erosion Progradation | Erosion Prog.
(m-yr) (m-yr) (m-yr) (m-yr?) | (myr)
NS024_01 3 -0.1£1.6 2.0 -8.1 4.3
NS024_03 3 -0.4+0.1 1.1 -3.0 3.0
NS097_01 4 -0.2¢0.1 1.7 -8.3 6.7 -6.6 7.1
NS114 01 5 0.0+0.1 2.2 -6.9 8.8
NS066_01 8 -1.7¢0.1 5.1 -16.3 12.2

Figure 7: Mean EPR per dyke segment (25ar)marshes in the Tidal/Wave dominated zone.
NS064_ 02, NS064_04, and NS023r are considered fluvial.
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